Properties of the Intermediate Point from the Taylor’s Theorem
نویسنده
چکیده
If I ⊆ R is an interval, a ∈ I and f : I → R is n 1 times differentiable on I , then, in view of Taylor’s theorem, there exists a function c : I → I such that, for each x ∈ I, f (x) = n−1 ∑ k=0 f (k) (a) k! (x−a) + f (n) (c(x)) n! (x−a) . In this paper we study the behaviour of the derivatives c(p) and θ (p) of the functions c and θ , respectively, when x approaches a, where θ : I →]0,1[ is defined by θ (x) = (c(x)−a)/(x−a) , if x ∈ I\{a} and θ (a) = 1/(n+1) . Mathematics subject classification (2000): 26A24.
منابع مشابه
On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملThe fuzzy generalized Taylor’s expansion with application in fractional differential equations
In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzyfractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessarythat we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractionaldifferential equations in the sense of Caputo...
متن کاملApplication of measures of noncompactness to infinite system of linear equations in sequence spaces
G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.
متن کاملNon - Archimedean Analysis and Rigorous Computation
An introduction to recent work on analysis over the non-Archimedean Levi-Civita field related to applications for common numerical tasks is provided. After studying the algebraic, order, and topological properties, a calculus is developed under which central concepts like the intermediate value theorem, mean value theorem, and Taylor’s theorem with remainder hold under slightly stronger conditi...
متن کاملShortcut Node Classification for Membrane Residue Curve Maps
comNode classification within Membrane Residue Curves (M-RCMs) currently hinges on Lyapunov’s Theorem and therefore the computation of mathematically complex eigenvalues. This paper presents an alternative criterion for the classification of nodes within M-RCMs based on the total membrane flux at node compositions. This paper demonstrates that for a system exhibiting simple permeation behaviour...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009